17α-estradiol is generated locally in the male rat brain and can regulate GAD65 expression and anxiety.

نویسندگان

  • Takamitsu Ikeda
  • Yukiko Makino
  • Maki K Yamada
چکیده

Increasing evidence suggests that 17β-estradiol, a sex hormone, is synthesized by neurons. In addition, 17α-estradiol, the stereoisomer of 17β-estradiol, is reported to be the dominant form in the male mouse brain. However, probably because the method to detect these isomers requires unusual and precise experimental design, the presence of this endogenous 17α-estradiol has not been reported subsequently and the actual role is therefore not well elucidated. We first quantified the estradiol level in hippocampal extracts using gas chromatography/mass spectrometry. As a result, 17α-estradiol was found in all of the male rats tested, while that of 17β-estradiol was detected only in a certain subset. The estrogen-biosynthesis inhibitor letrozole decreased the expression of the major presynaptic GABA synthesizing enzyme GAD65 in cultured neurons and the effect was abrogated by exogenously supplied 17α-estradiol. Next, injection of the inhibitor into the brain reduced the 17α-estradiol level, indicating its biogenesis in the brain. Under the same conditions, immuno-staining of GAD65 was also decreased. Furthermore, the inhibitor treatment increased anxiety index of rats in the open field and this was ameliorated by the addition of 17α-estradiol. We showed that 17α-estradiol was generated in the brain and acted as a regulator of inhibitory neurotransmission as well as behavior. These results may have implications for a variety of diseases, such as the menopausal depression and Alzheimer's disease that have been reported to be related to estrogen levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of sodium thiopental as a GABA mimetic drug in neonatal period on expression of GAD65 and GAD67 genes in hippocampus of newborn and adult male rats

Objective(s): Development of the nervous system in human and most animals is continued after the birth. Critical role of this period in generation and specialization of the neuronal circuits is confirmed in numerous studies. Any pharmacological intervention in this period may result in structural, functional or behavioral abnormalities. In this study, sodium thiopental a GABA mimetic drug was a...

متن کامل

Role of the AMPA receptors of paragigantocellularis lateralis nucleus in the inflammatory pain modulation in male rat

Introduction: The 17β-estradiol acts as a neurosteroid in the brain and modulates nociception by binding to the estrogen receptors and also by allosteric interaction with other membrane-bound receptors like glutamate receptors. Paragigantocellularis lateralis nucleus (LPGi) is one of the important brain regions implicated in the pain modulation. So, this study was designed to evaluate the ...

متن کامل

The Modulatory Effects of Pentoxifylline in Biochemical Changes Induced By 17α-Ethinyl Estradiol in the Rat Model

Background: Ethinylestradiol (EE) has induced cholestasis and hepatotoxicity in animal studies through reducing bile acid uptake by hepatocytes and induce of oxidative stress. Pentoxifylline (PTX) is a drug that by inhibition of release or transcription of proinflammatory cytokine cause prevents oxidative stress of liver cell and reduction of damage. We aimed to evaluate the effects of pentoxif...

متن کامل

The effects of cytotoxic concentration of testosterone, progesterone and estradiol on anti-metastasis CD82/KAI1 expression level in brain glioblastoma cancer cells

Background: Studies have shown that sexual steroids can affect metastasis in cancer cells of nervous system at cellular and molecular level; however, the cellular and molecular mechanism of sexual steroids action on metastasis in cancer cells of nervous system is unclear in many cases. This study aimed at investigating the effects of cytotoxic dose of testosterone, progesterone and estradiol on...

متن کامل

Comparison of the effects of progesterone and 17 β-estradiol on Schwann cell markers expression in rat adipose-derived stem cells

Steroids promote the myelination and regeneration in the peripheral nervous system. Whereas, little is known about the inducing effects by which the hormones exert their effects on Schwann cells differentiation. This could be revealed by the expression of Schwann cell markers in adipose-derived stem cells (ADSCs). The purpose of this study was to present the effects of progesterone and 17 β-est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropharmacology

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2015